Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion

Plamsa Diagnostics: Probes

Andrew Alt

Princeton University

August 16, 2021 PPPL Graduate Summer School

aalt@pppl.gov

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o
· · · · · ·					

Outline

Overview of plasma probes

2 Langmuir Probes

- Electron collection
- Ion collection
- Floating Potential
- Measurements from Langmuir probes
- Non-ideal effects
- 3 Double and triple probes
- 4 Emissive Probes

5 Bdot probes

Overview of plasma probes •০০০	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o
- ···					

Outline

Overview of plasma probes

Langmuir Probes

- Electron collection
- Ion collection
- Floating Potential
- Measurements from Langmuir probes
- Non-ideal effects
- 3 Double and triple probes
- 4 Emissive Probes

5 Bdot probes

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o
Overview					

Probe: Diagnostic tool that is literally inserted into a plasma

Advantages

- Give very localized measurements.
- Variety of probe types for different measurements.

Limitations

- Only available to low temperature plasmas. (Several eV at most)
- Can easily perturb the plasma.
- Results complicated to decipher.

Overview of plasma probes
ooLangmuir Probes
ooDouble and triple probes
ooEmissive Probes
ooBdot probes
oo

Example plasma: Magnetic Reconnection Experiment (MRX)

Experimental Parameters						
Electron density	\sim 1 $ imes$ 10 $^{14} ext{cm}^{-3}$					
Electron Temperature	$5-10\mathrm{eV}$					
Ion Temperature	$\sim 5\mathrm{eV}$					
Magnetic Field	\sim 200 G					
Pulse Length	\sim 200 μ s					
Plasma Size	$R \sim 40 \mathrm{cm}, a \sim 15 \mathrm{cm}$					

Conclusion

Overview of plasma probes Langmuir Probes Double and triple probes Conclusion occords and triple probes Conclusion occords

Example plasma: Tokamak scrape off layer

NSXT-U

Experimental Parameters					
Electron density	\sim 1 $ imes$ 10 ¹³ cm $^{-3}$				
Electron Temperature	$10-50\mathrm{eV}$				
Ion Temperature	\sim 100 eV				
Magnetic Field	\sim 2 T				
Pulse Length	\sim 5 s				
Plasma Size	$R \sim 1.7 \mathrm{m}, a \sim 0.7 \mathrm{m}$				

rerview of plasma probes	Langmuir Probes ●○○○○○○○○○○○○	Double and triple probes	Emissive Probes	Bdot probes	Conclusion O
S					

Outline

Overview of plasma probes

2 Langmuir Probes

- Electron collection
- Ion collection
- Floating Potential
- Measurements from Langmuir probes
- Non-ideal effects
- 3 Double and triple probes
- 4 Emissive Probes

5 Bdot probes

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o

Langmuir Probes

- Simplest plasma diagnostic.
 - Just a biased wire in a plasma.
 - Measures: T_e , n_e , and V_P .
 - Everything is a Langmuir probe!
- Vary the bias (V_B) and measure the current to make an "I-V trace."
- A particle is captured by the probe if:
 - It is incident on the probe.
 - It has enough energy to overcome the potential difference.

$\textbf{Active} + \textbf{Fields} \rightarrow \textbf{Particles}$

Overview of plasma probes

Langmuir Probes

Double and triple probes

Emissive Probes

Bdot probes

Conclusion

Electron current to a Langmuir probe

- An electron is captured if it has enough energy to overcome the bias.
- The electron current that is collected by a planar probe is given by

$$J_{e,z} = e \int_{v_{\min}}^{\infty} v_z f(\mathbf{v}) d^3 v$$

where

$$\frac{1}{2}mv_{\min}^2 = e(V_{\rm P} - V_{\rm B})$$

is the minimum velocity needed to reach the probe.

N. Hershkowitz, How Langmuir Probes Work (Academic, New York, 1989), pp. 113-183.

- When $V_{\rm B} = V_{\rm P}$, electrons are collected as if the probe isn't there.
- Flat portion only for truly ideal probe.
- Usually *I_e* will continue to increase with increased *V*_B.

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o
Sheath formati	on				

- The sheath is the region around the probe where the space potential changes from *V*_B to *V*_P.
 - Quasi-neutrality breaks down.
- Sheath size is limited to several λ_{De} .
- Potential in the sheath must be concave down $\implies n_i > n_e$.
- Electrons able to overcome *V* drop are collected.

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o
Ion Contributio	n				

- Tempting to handle ions exactly the same as electrons.
- Only valid if $T_e = T_i$.
- Often not the case for low temperature plasmas.

If $T_i << T_e$ the ion current must be handled differently than for the electrons leading to the "pre-sheath."

Overview of plasma probes

Langmuir Probes

Double and triple probes

Emissive Probes

Bdot probes

Conclusio

Particle densities in the sheath region

Assume Boltzmann electrons, and ion conservation

$$n_e(V) = n_0 e^{\frac{e(V-V_{\rm P})}{T_e}}, \quad n_i v_i(V) = n_{\rm s} v_{\rm s} = {\rm Const.}$$

Energy conservation for ions,

$$\frac{1}{2}m_i \left[v_i(V)\right]^2 + q_i V = \text{Const.}$$

Yields

$$n_i(V) = rac{n_{
m s}}{\sqrt{1+rac{2q_i(V_{
m s}-V)}{T_e}\left(rac{c_{
m s}}{v_{
m s}}
ight)^2}}$$

with $c_s^2 \equiv T_e/m_i$

0000	-	000000	0000	0000	
Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion

lon Contribution for $T_i \ll T_e$

$$n_i(V) = rac{n_{\mathrm{S}}}{\sqrt{1+rac{2q_i(V_{\mathrm{S}}-V)}{T_e}\left(rac{c_{\mathrm{S}}}{v_{\mathrm{S}}}
ight)^2}}$$

 $n_i > n_e$ requires $v_s > \sqrt{\frac{T_e}{m_i}} \equiv c_s$ and that the sheath edge is $\sim \frac{1}{2}T_e$ below V_P making,

$$I_{i,\text{sat}} = Aen_{\text{s}}v_{\text{s}} = \exp\left(-\frac{1}{2}\right)Ane\sqrt{\frac{T_e}{m_i}} \approx 0.6Ane\sqrt{\frac{T_e}{m_i}}$$

- At very negative biases, this current is very flat making it a reliable measure of n_e.
- *I*_{*i*,sat} is collected by the probe for all biases below *V*_P.

 $n_i(V)$ & $n_e(V)$ for values of v_s/c_s

N. Hershkowitz, How Langmuir Probes Work (Academic, New York,

1989), pp. 113-183.

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o
Total I-V trace					

N. Hershkowitz, How Langmuir Probes Work (Academic, New York, 1989), pp. 113-183.

Overview of plasma probes	Langmuir Probes ○○○○○○○●○○○○	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o
Floating potent	al				

 $V_{\rm f}$: The bias where no net current is measured, i.e. electron and ion currents balance.

$$I_{i} = I_{e}$$

$$0.6Ane \sqrt{\frac{T_{e}}{m_{i}}} = I_{e,sat} e^{-e(V_{P} - V_{f})/T_{e}}$$
Then,
$$V_{P} - V_{f} = \frac{T_{e}}{e} \ln \left(\frac{1}{0.6\sqrt{2\pi}}\sqrt{\frac{m_{i}}{m_{e}}}\right)$$

$$= \frac{T_{e}}{e} \ln \left(\frac{I_{e,sat}}{I_{i,sat}}\right) = 5.24 \frac{T_{e}}{e} \quad \text{for Xe}$$

 $V_{\rm f}$ is very easy to measure and can give a reasonable estimate for $V_{\rm P}$.

Overview of plasma probes	Langmuir Probes ○○○○○○○○○○○○	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o

A More Realistic Example

Langmuir probe data from a xenon plasma with B = 20 G, $V_{\rm B} = -55$ V, and I = 1.21 A.

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion
	00000000000000				

Measurements from Langmuir probes

- Electron temperature, T_e
 - Measured from sweeping the bias and the slope of $\ln(I(V))$.
- Electron density, n_e
 - Bias probe very negative, $(V_{\rm P} - V_{\rm B})/(eT_e) \gg 1$, and measure $I_{i,\rm sat}$.
 - Requires knowledge of T_e, but not very sensitive to actual value.
- Plasma potential, VP
 - Located at the "kink" in the I-V trace.
 - Roughly estimated by $V_{\rm f}$ with knowledge of T_e .

 Overview of plasma probes
 Langmuir Probes
 Double and triple probes
 Emissive Probes
 Bdot probes
 Conclusion

 Noon ideal officients:
 Shooth expression
 Shooth expres

Non-ideal effects: Sheath expansion

- The sheath is several λ_{De} long in order to shield the plasma from V_B.
- As the bias is increased, the sheath size increases ⇒ effective area increases.
- If the probe size is much larger than the sheath, this can be greatly mitigated, at least for *I*_{*i*,sat}.
- When the sheath is larger than the probe, can get orbit limited effects where particles enter the sheath but miss the probe.

Overviev 0000	w of plasm	a prob	es	Lan	gmuir Probes ○○○○○○○○○○	Double and triple probes	Emissive Probes	Bdot probes	Conclusic o

Non-ideal effects: Field-line draining

- Drawing the full $I_{e,sat}$ can be very disruptive to a plasma.
- In magnetized plasmas, drawing too much current from a field line can "drain" the density faster than it can be replenished.
- $I_{e,sat}$ is rarely used as a diagnostic tool but can be useful for cleaning probes.

Overview of plasma probes	Langmuir Probes	Double and triple probes ●00000	Emissive Probes	Bdot probes	Conclusion o
O 111					

Outline

Overview of plasma probes

2 Langmuir Probes

- Electron collection
- Ion collection
- Floating Potential
- Measurements from Langmuir probes
- Non-ideal effects

Oouble and triple probes

4 Emissive Probes

5 Bdot probes

Double Langmuir probe setup

Issue: Biasing a probe relative to ground can be problematic if V_P varies rapidly in time. **Solution:** What if we bias relative to the plasma?

- Two identical Langmuir probes are placed in the plasma and float relative to ground.
- A bias voltage, V_B, is applied between them.
- The resulting current flowing between them is measured.
- The total current is limited to $I_{i,sat}$.
- Can measure T_e and n_e . Less useful for V_P .

$$I(V_{\rm B}) = I_{i,{
m sat}} anh\left(rac{eV_{\rm B}}{T_e}
ight)$$

H.Ji, et. al Rev. Sci. Instrum. 62, 2326-2337 (1991)

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion
		00000			

Triple Langmuir probe setup

Issue: Sweeping the bias voltage of a probe limits your time resolution. **Solution:** What if we could simultaneously measure enough points of the I-V curve to get the info we want?

It turns out that we only need 3

- One tip is a simple floating probe.
- The other two are in a double probe configuration with a fixed bias.

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion
		000000			

Triple Langmuir probe analysis

The currents

$$I_{+} = -I_{e,sat} e^{-e(V_{P}-V_{+})/T_{e}} + I_{i,sat}$$

$$I_{-} = -I_{e,sat} e^{-e(V_{P}-V_{-})/T_{e}} + I_{i,sat} = -I_{+}$$

$$I_{f} = -I_{e,sat} e^{-e(V_{P}-V_{f})/T_{e}} + I_{i,sat} = 0$$

Combining them,

$$1/2 = (I_{+} - I_{f})/(I_{+} - I_{-})$$

$$1/2 = \left(1 - e^{-e(V_{+} - V_{f})/T_{e}}\right) / \left(1 - e^{-e(V_{+} - V_{-})/T_{e}}\right)$$

If $V_{\rm B} \gg T_e/e$,

$$e(V_+ - V_{\rm f}) \approx T_e \ln 2$$

H.Ji, et. al Rev. Sci. Instrum. 62, 2326-2337 (1991)

Overview of plasma probes	Langmuir Probes	Double and triple probes ○○○○●○	Emissive Probes	Bdot probes	Conclusion o

Triple probe usage

$$e(V_+ - V_{\rm f}) pprox T_e \ln 2$$

 $I_- pprox I_{i,{
m sat}} = 0.6 Ane \sqrt{rac{T_e}{m_i}}$

- Only need to measure 2 voltages and 1 current.
- Fast measurement of both T_e and n_e .

H.Ji, et. al Rev. Sci. Instrum. 62, 2326–2337 (1991)

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion
		00000			

Double and triple probe limitations

- Cannot measure an arbitrary f(v), Rely on the assumption of a Maxwellian.
- Need low spatial variation of plasma.
 - Plasma must be identical at each tip.
 - Spatial variation is solved by placing the tips very close together.
 - If they are placed too close, they will perturb each other's plasma or even arc if sheaths overlap.
- More complex and perturbative than a single Langmuir probe.

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o

Outline

Overview of plasma probes

2 Langmuir Probes

- Electron collection
- Ion collection
- Floating Potential
- Measurements from Langmuir probes
- Non-ideal effects

3 Double and triple probes

Emissive Probes

5 Bdot probes

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion
			0000		

Motivation for Emissive Probes

Issue: *V*_P measurements are very challenging.

$$V_{\mathrm{P}} - V_{\mathrm{f}} = rac{T_e}{e} \ln \left(rac{I_{e,\mathrm{sat}}}{I_{i,\mathrm{sat}}}
ight)$$

- What if we could make $I_{i,\text{sat}} \sim I_{e,\text{sat}}$?
- Then $V_{\rm f} = V_{\rm P}$.
- A probe emitting an electron is equivalent to collecting an ion.
- Can effectively make $I_{i,sat}$ larger.
- A hot filament can be used to emit electrons into the plasma.

N. Hershkowitz, How Langmuir Probes Work (Academic, New York, 1989),

Overview of plasm	na probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion o

Space Charge Issues

- As the emission current grows, the sheath is affected.
- Emitted electrons mean that less incoming ones need to be stopped.
- After a critical emission level, V_f stops rising and a virtual cathode appears.

For a highly emitting probe: $V_{
m f} pprox V_{
m P} - T_e/e$

J. P. Sheehan and N. Hershkowitz, Plasma Sources Sci. Technol. 20,063001 (2011).

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes ○○○●	Bdot probes	Conclusion O

Emissive Probe Issues

$$V_{\rm f} \approx V_{\rm P} - T_e/e$$

- Floating potential still coupled to the electron temperature.
- Filament lifetime very limited.
- Extra circuitry needed to heat a filament.
- Strong limit on plasma density since need *I*_{emit} ~ *I*_{e,sat}.

Emissive probe I-V traces at different emission temperatures

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes ●○○○	Conclusion O
Outline					

Overview of plasma prob

2 Langmuir Probes

- Electron collection
- Ion collection
- Floating Potential
- Measurements from Langmuir probes
- Non-ideal effects
- 3 Double and triple probes
- Emissive Probes

5 Bdot probes

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes o●oo	Conclusion o

Bdot probe operation

Bdot probe: (AKA Mirnov coil) used to measure the magnetic field in a low temperature plasma.

Work via Faraday's Law

$$V_{\rm coil} = -NA \frac{{
m d}B_\perp}{{
m d}t}$$

- Signal can be passed through a passive integrator to get B_⊥(t).
- Using a triplet of probes get 3-D measurement at one point.
- Need to be shielded from the plasma.

Passive + Fields

Overview of plasma probes

angmuir Probes

Double and triple probes

Emissive Probes

Bdot probes ○○●○ Conclusio o

Bdot probes in MRX

C. Myers, Laboratory study of the equilibrium and eruption of line-tied magnetic flux ropes in the solar

corona, Ph. D. Thesis (2015).

Overview of plasma probes

Langmuir Probes

Double and triple probes

Emissive Probes

Bdot probes

Conclusion

Example Bdot data from MRX

Myers et al., Nature 528, 526 (2015)

Overview of plasma probes	Langmuir Probes	Double and triple probes	Emissive Probes	Bdot probes	Conclusion
					•

Questions?

A good reference:

N. Hershkowitz, *How Langmuir Probes Work* (Academic, New York, 1989), pp. 113–183.